首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3470篇
  免费   885篇
  国内免费   1172篇
测绘学   74篇
大气科学   1227篇
地球物理   809篇
地质学   2086篇
海洋学   81篇
天文学   11篇
综合类   188篇
自然地理   1051篇
  2024年   10篇
  2023年   70篇
  2022年   176篇
  2021年   228篇
  2020年   210篇
  2019年   227篇
  2018年   200篇
  2017年   188篇
  2016年   154篇
  2015年   198篇
  2014年   236篇
  2013年   246篇
  2012年   227篇
  2011年   210篇
  2010年   201篇
  2009年   264篇
  2008年   236篇
  2007年   285篇
  2006年   299篇
  2005年   211篇
  2004年   175篇
  2003年   178篇
  2002年   163篇
  2001年   172篇
  2000年   129篇
  1999年   123篇
  1998年   91篇
  1997年   80篇
  1996年   81篇
  1995年   54篇
  1994年   42篇
  1993年   37篇
  1992年   28篇
  1991年   36篇
  1990年   18篇
  1989年   17篇
  1988年   11篇
  1987年   4篇
  1986年   5篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1954年   3篇
排序方式: 共有5527条查询结果,搜索用时 156 毫秒
141.
The alpine meadow is widely distributed on the Tibetan Plateau with an area of about 1.2×106kn2. Damxung County, located in the hinterland of the Tibetan Plateau, is the place covered with this typical vegetation. An open-path eddy covariance system was set up in Damxung rangeland station to measure the carbon flux of alpine meadow from July to October,2003. The continuous carbon flux data were used to analyze the relationship between net ecosystem carbon dioxide exchange (NEE) and photosynthetically active radiation (PAR), as well as the seasonal patterns of apparent quantum yield (α) and maximum ecosystem assimilation (Pmax).Results showed that the daytime NEE fitted fairly well with the PAR in a rectangular hyperbola function, with α declining in the order of peak growth period (0.0244 μmolCO2 · μmol-1pAR) >early growth period > seed maturing period > withering period (0.0098 μmolCO2 · μmol-1pAR).The Pmax did not change greatly during the first three periods, with an average of 0.433mgCO2· m-2· s-1, i.e. 9.829 μmolCO2· m-2· s-1. However, during the withering period, Pmax was only 0.35 mgCO2 · m-2 · s-1, i.e. 7.945 μmolCO2 · m-2 · s-1. Compared with other grassland ecosystems, the α of the Tibetan Plateau alpine meadow ecosystem was much lower.  相似文献   
142.
The Tibetan Plateau, the Roof of the World, is the highest plateau with a mean elevation of 4000 m. It is characterized by high levels of solar radiation, low air temperature and low air pressure compared to other regions around the world. The alpine grassland, a typical ecosystem in the Tibetan Plateau, is distributed across regions over the elevation of 4500 m. Few studies for carbon flux in alpine grassland on the Tibetan Plateau were conducted due to rigorous natural conditions. A study of soil respiration under alpine grassland ecosystem on the Tibetan Plateau from October 1999 to October 2001 was conducted at Pangkog County, Tibetan Plateau (31.23°N, 90.01°E, elevation 4800 m). The measurements were taken using a static closed chamber technique, usually every two weeks during the summer and at other times at monthly intervals. The obvious diurnal variation of CO2 emissions from soil with higher emission during daytime and lower emission during nighttime was discovered. Diurnal CO2 flux fluctuated from minimum at 05:00 to maximum at 14:00 in local time. Seasonal CO2 fluxes increased in summer and decreased in winter, representing a great variation of seasonal soil respiration. The mean soil CO2 fluxes in the alpine grassland ecosystem were 21.39 mgCO2 · m-2 · h-1, with an average annual amount of soil respiration of 187.46 gCO2 · m-2 · a-1. Net ecosystem productivity is also estimated, which indicated that the alpine grassland ecosystem is a carbon sink.  相似文献   
143.
144.
M W Pasquini  F Harris 《Area》2005,37(1):17-29
Waste disposal constitutes an acute problem in numerous African cities. One solution could lie in the recycling of the nutrient-rich waste into agriculture taking place in and around cities. Farmers involved in vegetable production around Jos, Nigeria, have developed a sophisticated soil fertility management strategy combining inorganic fertilizers, manure and urban waste ash. This paper: (1) investigates the socio-economic constraints linked to obtaining scarce organic inputs, particularly urban waste ash and the health hazards (particularly heavy metal contamination of soil and crops) caused by using this ash and (2) suggests ways to improve use of this important resource.  相似文献   
145.
Most pingos in the permafrost region of the high northern Tibetan Plateau form along active fault zones and many change position annually along the zones and thus appear to migrate. The fault zones conduct geothermal heat, which thins permafrost, and control cool to hot springs in the region. They maintain ground-water circulation through broken rock in an open system to supply water for pingo growth during the winter in overlying fluvial and lacustrian deposits. Springs remain after the pingos thaw in the summer. Fault movement, earthquakes and man's activities cause the water pathways supplying pingos to shift and consequently the pingos migrate.

The hazard posed to the new Golmud–Lhasa railway across the plateau by migrating pingos is restricted to active fault zones, but is serious, as these zones are common and generate large earthquakes. Pingos have damaged the highway and the oil pipeline adjacent to the railway since 2001. One caused tilting and breaking of a bridge pier and destroyed a highway bridge across the Chumaerhe fault. Another has already caused minor damage to a new railway bridge. Furthermore, the construction of a bridge pier in the North Wuli fault zone in July–August 2003 created a conduit for a new spring, which created a pingo during the following winter. Measures taken to drain the ground-water via a tunnel worked well and prevented damage before the railway tracks were laid. However, pier vibrations from subsequent train motion disrupted the drain and led to new springs, which may induce further pingo growth beneath the bridge.

The migrating pingos result from active fault movement promoting artesian ground-water circulation and changing water pathways under the seasonal temperature variations in the permafrost region. They pose a serious hazard to railway construction, which, in turn can further disturb the ground-water conduits and affect pingo migration.  相似文献   

146.
Land degradation imposes a great threat to the world. It is not merely an environmental issue, but also a social and economic problem. Land desertification is among the main aspects of environment changes in the source region of the Yellow River. Previous studies focused on water resource utilization and soil erosion, but land degradation in the source region of the Yellow River even the whole Qinghai-Xizang Plateau received little attention. Based on the data obtained by field investigation and TM satellite images of 2000, this study provides the classification and evaluation information of the land degradation in the source region of the Yellow River. There are six types of land degradation in this region: water erosion in the northern mountains around the Gonghe Basin, sandy desertification in the Gonghe Basin and Upland Plain Area, aridization in the lower reaches, salinization in the Gonghe Basin, vegetation degradation in the intramontance basin and freezing and thawing erosion in the high mountains. The total degraded area is 34,429.6 km2, making up 37.5% of the land in the study area. Finally, land degradation in the source region of the Yellow River was evaluated according to changes in the physical structure and chemical component of soils, land productivity, secondary soil salt and water conditions.  相似文献   
147.
通过2 0 0 4年度各相关图幅的大力工作,在基础地质、矿产和资源等方面取得了大量实际材料,综合研究区域构造地层格架、青藏高原地质图和青藏高原南部火山岩及其地球动力学意义等,取得重要进展和新认识,在矿产资源、旅游和人文景观等方面也取得重要阶段性成果。  相似文献   
148.
晚新生代温泉沉积盆地,是青藏高原腹地在南北向挤压、东西向伸展的构造背景下,沿南北向边界走滑断层,经边界正断层和内部张剪断层的进一步发展而形成的近南北向单断单剪楔形半地堑活动沉积盆地。它可能代表了晚新生代青藏高原第三期强烈挤压隆升事件,是侧向向东剪切挤出的结果。笔者以盆地充填序列和TL、ESR测年资料为主要依据,推测唐古拉山在30 0~2 5 0ka前后全面进入冰冻圈;而以温泉活动沉积盆地为代表的中更新世晚期(2 2 4 .0~1 5 0 .2ka)的冰碛 冰水堆积则对应于青藏高原第三期隆升的断陷盆地发育阶段;中更新世晚期—晚更新世中期(1 4 4 .0~5 6ka)为湖相沉积;晚更新世中期至今(35~0ka)对应于高原缓慢隆升与夷平发育阶段。长江溯源在35ka切割通天河盆地,形成通天河;而在1 6ka侵蚀切穿雁石坪 温泉兵站峡谷,形成布曲河。  相似文献   
149.
青藏高原腹地植物碳同位素组成对环境条件的响应   总被引:7,自引:0,他引:7  
现代植物碳同位素组成是特定环境影响的结果,通过对植物碳同位素组成的研究可以揭示植物生长期环境信息。针对青藏高原腹地高寒草甸~高寒草原过渡区植被碳同位素组成进行研究;该区高山嵩草样δ13C值在-25.63‰~-27.95‰间,平均值-26.63‰;高寒草原区混合样δ13C值于-26.29‰~-27.73‰间,平均值-27.04‰。高山嵩草样δ13C值总体呈现由南东往北西方向正偏趋势,研究区北部高寒草原区混合植物样也呈现出由南向北富重碳同位素趋势。这些变化规律被认为是主要受降水环境影响的结果,而区域内降水条件的展布规律则是受高原夏季风运移方式的控制。对植物δ13C值与地理位置的回归分析表明,该区植被碳同位素组成与地理位置相关,高山嵩草样(r=0.44603,n=29,p<0.05)和混合样(r=0.8112,n=5,p<0.1)均表现出对区域降水环境条件的良好响应。据此,以该区植物δ13C值为背景,进行合理推算,拟定了研究区内干旱区和湿润区界限的位置。  相似文献   
150.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号